Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(23): 33061-33069, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878380

RESUMO

We present an advanced optical-trapping method that is capable of trapping arbitrary shapes of transparent and absorbing particles in air. Two parabolic reflectors were used to reflect the inner and outer parts of a single hollow laser beam, respectively, to form two counter-propagating conical beams and bring them into a focal point for trapping. This novel design demonstrated high trapping efficiency and strong trapping robustness with a simple optical configuration. Instead of using expensive microscope objectives, the parabolic reflectors can not only achieved large numerical aperture (N.A.) focusing, but were also able to focus the beam far away from optical surfaces to minimize optics contamination. This design also offered a large free space for flexible integration with other measuring techniques, such as optical-trapping Raman spectroscopy, for on-line single particle characterization.

2.
Appl Opt ; 56(23): 6577-6582, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047948

RESUMO

Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

3.
Appl Opt ; 56(3): B1-B4, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157859

RESUMO

We demonstrate a method for measuring elastic back-scattering patterns from single laser trapped micron-sized particles, spanning the scattering angle range of θ=167.7°-180° and φ=0°-360° in spherical coordinates. We calibrated the apparatus by capturing light-scattering patterns of 10 µm diameter borosilicate glass microspheres and comparing their scattered intensities with Lorenz-Mie theory. Back-scattering patterns are also presented from a single trapped Johnson grass spore, two attached Johnson grass spores, and a cluster of Johnson grass spores. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering data for lidar applications.

4.
Appl Opt ; 56(3): B169-B178, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157879

RESUMO

A high-power fiber laser collimator and array of collimators are described with optical architecture, allowing one to transmit almost 100% of the full power output from fiber facets. In the case of coherent beam combining, more than 70% of the full power can be focused into a diffraction limited spot determined by the diameter of the conformal aperture. The truncated-Gaussian beam tails are not trapped inside the array but are redirected through the output lenses and dispersed outside of the array along with the main collimated beam, thus eliminating the requirement for cooling the array. Detailed analysis is presented for the beam tail propagation geometry's dependence on array optical parameters, including the interior redirecting lenses. The parasitic scattering from imperfections of the interior lenses is estimated to be as small as a few watts when 1.5-2 kW is emitted by each fiber facet.

5.
Opt Lett ; 36(22): 4455-7, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22089595

RESUMO

We demonstrate coherent combining (phase locking) of seven laser beams emerging from an adaptive fiber-collimator array over a 7 km atmospheric propagation path using a target-in-the-loop (TIL) setting. Adaptive control of the piston and the tip and tilt wavefront phase at each fiber-collimator subaperture resulted in automatic focusing of the combined beam onto an unresolved retroreflector target (corner cube) with precompensation of quasi-static and atmospheric turbulence-induced phase aberrations. Both phase locking (piston) and tip-tilt control were performed by maximizing the target-return optical power using iterative stochastic parallel gradient descent (SPGD) techniques. The performance of TIL coherent beam combining and atmospheric mitigation was significantly increased by using an SPGD control variation that accounts for the round-trip propagation delay (delayed SPGD).

6.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A106-21, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045873

RESUMO

Control methods and system architectures that can be used for locking in phase of multiple laser beams that are generated at the transmitter aperture plane of a coherent fiber-collimator array system (pupil-plane phase locking) are considered. In the proposed and analyzed phase-locking techniques, sensing of the piston phase differences is performed using interference of periphery (tail) sections of the laser beams prior to their clipping by the fiber-collimator transmitter apertures. This obscuration-free sensing technique eliminates the need for a beam splitter being directly located inside the optical train of the transmitted beams--one of the major drawbacks of large-aperture and/or high-power fiber-array systems. Numerical simulation results demonstrate efficiency of the proposed phase-locking methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...